Тема 4. ИНТЕРПОЛИРОВАНИЕ И ЭКСТРАПОЛИРОВАНИЕ ФУНКЦИЙ

Дана таблица значений функции в соответствии с вариантом в виде:

x	x_0	x_1	x_2	x_3
y	y_0	y 1	y_2	y ₃

Задание 1. Рассчитайте параметры различных функций по исходным табличным данным своего варианта методом наименьших квадратов средствами MS Excel и сформулируйте вывод о том, какая из функций наилучшим образом аппроксимирует экспериментальные данные.

Задание 2. Составьте формулу интерполяционного многочлена Лагранжа:

- 2.1. ручным методом (степень многочлена -2);
- 2.2. средствами MathCad (степень многочлена -3);

Задание 3. Вычислите значение заданной функции своего варианта, используя многочлен Лагранжа третьей степени из 2 задания $L_3(a)$:

- 3.1. средствами MathCad;
- 3.2. с помощью программы Turbo Pascal.

Номер варианта	x_0	x_1	x_2	x_3	yo	<i>y</i> ₁	y ₂	y 3	a
1.	-1	0	3	4	-3	5	2	-6	0,14
2.	2	3	5	6	4	1	7	2	2,16
3.	0	2	3	5	-1	-4	2	-8	3,68
4.	7	9	13	15	2	-2	3	-4	10,07
5.	-3	-1	3	5	7	-1	4	-6	-2,59
6.	1	2	4	7	-3	-7	2	8	6,89
7.	-1	1	2	4	4	9	1	6	0,23
8.	2	4	5	7	9	-3	6	-2	4,25
9.	-4	-2	0	3	2	8	5	10	1,58
10.	-1	1,5	3	5	4	-7	1	-8	1,49
11.	2	4	7	8	-1	-6	3	12	6,29
12.	-9	-7	-4	-1	3	-3	4	-9	-5,42
13.	0	1	4	6	7	-1	8	2	2,22
14.	-8	-5	0	2	9	-2	4	6	-2,13
15.	-7	-5	-4	-1	4	-4	5	10	-3,46
16.	1	4	9	11	-2	9	3	-7	7,25
17.	7	8	10	13	6	-2	7	-10	12,63
18.	-4	0	2	5	4	8	-2	-9	1,46
19.	-3	-1	1	3	11	-1	6	-2	-0,56
20.	0	3	8	11	1	5	-4	-8	4,59
21.	0	1	2	3	3	4	7	5	2,91
22.	-1	0	1	2	0,5	1	2	4	0,92
23.	1	3	5	7	3	-2	4	-3	5,67